Sunday, July 30, 2017

Undressing The Post Modern Reality Game.


The singular goal of post modernism has been to shake the chains of reality. Aristotle’s Law of Identity (A is A—Things are what they are)  is too confining for those who wish to reorder society. An alternative to things "are what they are" is "things are what they are not." Bizarre? Illogical? Silly gibberish? Certainly to those who do not delve into the mechanics of philosophy, but it is the front line of battle for the progressive post modern. It is their cosmic bunny hole. A place where the impossible, the illogical, becomes “respected” thinking. It is the place where reality is believed to conform to the contents of one’s mind. The place where other worldly budgets are believed to be sustainable, where treaties with criminal nations are accepted as realistic, where theft is perfectly reasonable if it helps to sustain the needy. This is the place where anything is possible — providing that it is packaged as a “greater good."

While an overwhelming number of people hold strong opinions on matters that affect them, almost none of them consciously deal with them in philosophical terms. They are however, unconsciously dealing with these very same matters in philosophical terms. They absorb its principles from the cultural atmosphere around them—from schools, colleges, books, newspapers, movies, the internet and television. Who sets the tone of a culture? A small handful of men: the philosophers. Others follow their lead, either by conviction or by default.

Post modernism has its roots in the Age of Enlightenment, but it took the Frankfurt School, between the two world wars, to bring it out of the closet. They did so with a vengeance using Heisenberg’s Uncertainty Principle as their lever. It "proved" that since both position and momentum of particles can't be determined at the same time (by observation and measurement), that particles do not possess a unique position and momentum at a given time.  Two young scientists in Denmark have just exploded their world…



Smart atomic cloud solves Heisenberg's observation problem

Nature - July 13, 2017

Scientists at the University of Copenhagen have developed a hands-on answer to a challenge linked to Heisenberg's Uncertainty Principle. The researchers used laser light to link caesium atoms and a vibrating membrane. The research, the first of its kind, points to sensors capable of measuring movement with unseen precision.

When measuring atom structures or light emissions at the quantum level by means of advanced microscopes or other forms of special equipment, things are complicated due to a problem which, during the 1920s, had the full attention of Niels Bohr and Werner Heisenberg. And this problem, dealing with inaccuracies that taint certain measurements conducted at quantum level, is described in Heisenberg's Uncertainty Principle, which states that complementary variables of a particle, such as velocity and position, can never be simultaneously known.

In a scientific report published in this week's issue of Nature, NBI researchers demonstrate that Heisenberg's Uncertainty Principle can be neutralized to some degree. This has never been shown before, and the results may spark development of new measuring equipment, and new and better sensors.

Professor Eugene Polzik, head of the Quantum Optics (QUANTOP) at the Niels Bohr Institute, led the research, which involved the construction of a vibrating membrane and an advanced atomic cloud locked up in a minute glass cage.

Light 'kicks' object
The Uncertainty Principle emerges in observations conducted via a microscope operating with laser light, which inevitably will lead to the object being kicked by photons. As a result of those kicks, the object begins to move in a random way. This phenomenon is known as quantum back action (QBA), and these random movements put a limit to the accuracy with which measurements can be carried out at quantum level. To conduct the experiments at NBI, professor Polzik and his collaborators used a tailor-made membrane as the object observed at quantum level.

In recent decades, scientists have tried to find ways of 'fooling' Heisenberg's Uncertainty Principle. Eugene Polzik and his colleagues came up with the idea of implementing the advanced atomic cloud a few years ago. It consists of 100 million caesium atoms locked in a hermetically closed glass cell, explains the professor:
"The cell is just one centimeter long, 1/3 of a millimeter high and 1/3 of a millimeter wide, and in order to make the atoms work as intended, the inner cell walls have been coated with paraffin. The membrane, whose movements we observed at quantum level, measures 0.5 millimeters, which actually is a considerable size from a quantum perspective."

The idea behind the glass cell is to deliberately send the laser light used to study the membrane movements through the encapsulated atomic cloud before the light reaches the membrane, explains Eugene Polzik: "This results in the laser light-photons 'kicking' the object—i.e. the membrane—as well as the atomic cloud, and these 'kicks,' so to speak, cancel out. This means that there is no longer any quantum back action—and therefore no limitations as to how accurately measurements can be carried out at quantum level."

How can this be utilized?
"For instance, when developing new and much more advanced types of sensors for analyses of movements,", says professor Eugene Polzik. "Generally speaking, sensors operating at quantum level are receiving a lot of attention these days. One example is the Quantum Technologies Flagship, an extensive EU program which also supports this type of research."

The fact that it is, indeed, possible to 'fool' Heisenberg's Uncertainty Principle may also prove significant in relation to better understanding gravitational waves—waves in space moving at the speed of light. In September of 2015, the American LIGO experiment published the first direct registrations and measurements of gravitational waves stemming from a collision between two very large black holes. However, the equipment used by LIGO is influenced by quantum back action, and the new research from NBI may prove capable of eliminating that problem, says Polzik.

Explore further: Quantum teleportation between atomic systems over long distances
More information: Quantum back-action-evading measurement of motion in a negative mass reference frame, Nature (2017). [PAYWALLED]http://www.nature.com/nature/journal/v547/n7662/full/nature22980.html?foxtrotcallback=true


Frank Schulwolf


3 comments:

Prof Ira said...

Thanks, Frank. Sadly, the original "Nature" paper is paywalled and, as a non-subscriber I'm not willing to pay to read it. However, the Phys.org story is available for free and I read it through.

As you know, Einstein (and Ira :^) would like to find an interpretation of Heisenberg's Uncertainty principle that is compatible with a more classical view of Quantum Mechanics (QM) that would make it more compatible with Relativity and a Deterministic Universe. Perhaps this approach will help get us there.

As for Post-Modernism, I've long enjoyed this site that, mocking Post-Modern philosophy, generates formal-looking academic papers (from "elsewhere") that are total nonsense. http://www.elsewhere.org/journal/pomo/

Love, Ira

Prof Ira said...

Every time you visit http://www.elsewhere.org/journal/pomo/ you get a new and different paper. Try it!

Love, Ira

Prof Ira said...

This Wikipedia link details the (in)famous Sokal Affair where a total nonsense paper was published in Social Text, an academic journal of postmodern cultural studies. https://en.wikipedia.org/wiki/Sokal_affair

From that link:

****************************
The Sokal affair, also called the Sokal hoax,[1] was a scholarly publishing hoax perpetrated by Alan Sokal, a physics professor at New York University and University College London. In 1996, Sokal submitted an article to Social Text, an academic journal of postmodern cultural studies. The submission was an experiment to test the journal's intellectual rigor and, specifically, to investigate whether "a leading North American journal of cultural studies – whose editorial collective includes such luminaries as Fredric Jameson and Andrew Ross – [would] publish an article liberally salted with nonsense if (a) it sounded good and (b) it flattered the editors' ideological preconceptions".[2]
The article, "Transgressing the Boundaries: Towards a Transformative Hermeneutics of Quantum Gravity",[3] was published in the Social Text spring/summer 1996 "Science Wars" issue. It proposed that quantum gravity is a social and linguistic construct. At that time, the journal did not practice academic peer review and it did not submit the article for outside expert review by a physicist.[4][5] On the day of its publication in May 1996, Sokal revealed in Lingua Franca that the article was a hoax.[2]
The hoax sparked a debate about the scholarly merit of humanistic commentary about the physical sciences; the influence of postmodern philosophy on social disciplines in general; academic ethics, including whether Sokal was wrong to deceive the editors and readers of Social Text; and whether Social Text had exercised appropriate intellectual rigor.
*****************************

Love, Ira